Changwen Xu

Education

University of Michigan	Ann Arbor, MI
Doctor of Philosophy in Mechanical Engineering	May. 2027 (expected)
Carnegie Mellon University	Pittsburgh, PA
Master of Science in Computational Materials Science and Engineering, GPA: 4.0/4.0	Dec. 2022
South China University of Technology	Guangzhou, China
Bachelor of Engineering in Materials Science and Engineering, GPA: 3.96/4.0	Jun. 2021

PUBLICATION

- Huang, H., Magar, R., Xu, C., Barati Farimani, A., Materials Informatics Transformer: A Language Model for Interpretable Materials Properties Prediction, arXiv preprint arXiv:2308.16259, 2023 (under review by Nature Machine Intelligence)
- Wang, Y., Xu, C., Li, Z., Barati Farimani, A., Denoise Pretraining on Nonequilibrium Molecules for Accurate and Transferable Neural Potentials, J. Chem. Theory Comput., 2023, 19, 15, 5077–5087
- 3. Xu, C., Wang, Y., Barati Farimani, A., TransPolymer: a Transformer-based language model for polymer property predictions, *npj Computational Materials*, 2023, 9, 64
- 4. Wang, L. (#), Xu, C. (#), Zhang, W., Zhang, Q., Zhao, M., Zeng, C., Jiang, Q., Gu, C., Ma, Y., Electrocleavage Synthesis of Solution-Processed, Imine-Linked, Crystalline Covalent Organic Framework Thin Films, J. Am. Chem. Soc., 2022, 144, 20, 8961–8968. (# These authors contributed equally.)

Research Experience

Machine Learning Summer Internship	Remote
Redesign Science	Jun. 2023 – Aug. 2023
Improving ML Collective Variables with Energy-based Path Construction Python,	MD
• Constructed Minimum Energy Path for better Machine-Learned Collective Varia events by metadynamics	bles for sampling rare
 Trained time-lagged autoencoder to learn CVs that capture the metastability in low dime Conducted interpolations in CV space between start and end state and minimized the obetter transition path 	ensions energy along the path for
- Ran \mathbf{MetaD} simulation using the ML-CVs and compared the results to those without en	ergy-aware paths
Graduate Student Researcher	Pittsburgh, PA

Graduate Student Researcher		Phusburgh, PA
Carnegie Mellon University	Oct. 2021 – May. 2022, Aug.	2022 - Dec. 2022
Graduate Research Assistant		Pittsburgh, PA
Carnegie Mellon University	May. 2022 – Aug. 2022, Jan.	2023 - Apr. 2023

Materials Informatics Transformer for Interpretable Property Predictions | Python, Language Model

- Proposed MatInFormer, a Transformer-based language model for interpretable material property predictions
- Introduced a novel **pretraining** approach which combined Masked Language Modeling and **Lattice Parameter Prediction** for learning the grammar of crystallography
- Finetuned the model on Matbench and MOFs data, achieving comparable performance to structure-based or structure-agnostic models on most chosen datasets
- Demonstrated the **flexibility** of the framework by manipulating the input informatics tokens and analyzed the **interpretability** of prediction results by attention visualization

Denoise Pre-training for Accurate and Transferable Neural Potentials | Python, PyTorch, Neural Potential

- Proposed **denoise** pretraining on **non-equilibrium** molecular conformations to achieve more accurate and transferable GNN potential predictions
- Finetuned the model pretrained on small molecules to improve performance on diverse molecular systems with remarkable **transferability**

• Demonstrated **data efficiency** of pretrained GNNs for large and complex molecular systems with limited training data

Transformer-based Language Model for Polymer Property Predictions | Python, PyTorch, Language Model

- Proposed TransPolymer, a Transformer-based model for accurate and efficient polymer property predictions
- **Pretrained** with **Masked Language Modeling** on a large unlabeled dataset of polymer sequences for learning expressive representations
- Finetuned the pretrained model in different downstream prediction tasks, achieving the state-of-the-art (SOTA) results and surpassing baseline models by large margins in most cases
- Conducted various ablation studies on pretraining, frozen transformer encoder, and data augmentation, and identified influential parts of polymers on prediction results by **attention visualization**
- Highlighted the model as a promising computational tool for understanding chemistry in a data science view

Undergraduate Student Researcher

South China University of Technology

Electrocleavage Synthesis of Solution-Processed Covalent Organic Framework (COF) Thin Films

• Developed an unprecedented electrocleavage synthesis strategy to produce **imine-linked COF films** directly on electrodes from electrolyte solutions at room temperature

Guangzhou, China Sep. 2018 – Jun. 2021

- Carried out **cathodic exfoliation** of COF powders into nanosheets by electrochemical reduction and protonation and **anodic oxidation** to reproduce COF structures
- Characterized the COF films, COF solutions as well as precipitated COF nanosheets to verify the method

Synthesis and Solution Processing of Triazine-based Crosslinked Conjugated Polymers (TCPs)

- Reported the method of **protonating** the polymeric skeletons to enhance the solubility of TCPs under electrostatic repulsions to achieve solution processing
- Synthesized triazine-based n-type crosslinked conjugated polymers with **perylene diimide** units and achieved **solution-processing** of crosslinked conjugated polymers for the fabrication of polymeric films
- Developed the method of electrocleavage synthesis of triazine-based COFs from previous research and compared the results of the two methods.

Projects

AI Ramanujan: Discovery of Formula Equivalence (CMU) | PyTorch, Language Model Oct. 2022 – Dec. 2022

- Train **Transformer** encoders to evaluate whether two mathematical formulas map to the same value
- Construct a **tokenizer trainer** for adaptation to formulas in Mathematica format and design a **translator** to convert formulas in Maple format into Mathematica format
- Adapt the encoders with **cross attention** to encode correlations between two embeddings and train the model by **contrastive learning**

JPX Tokyo Stock Exchange Prediction (CMU) | Python, PyTorch, sklearn, EDA May. 2022 – Jul. 2022

- Trained LSTM model for JPX stock prediction and compared the model against real future returns for evaluation
- Applied exploratory data analysis on JPX stock data, conducted data cleaning, and carried out **feature engineering** to construct financial descriptors
- Achieved the highest rank of top 15% in Kaggle competition "JPX Tokyo Stock Exchange Prediction"

TALKS AND PRESENTATIONS

Poster Presentation at Molecular Machine Learning Conference	Jun.	2024
Presented the poster on <i>CLOUD: A Scientific Foundation Model for Crystal Property Prediction</i>The poster was chosen as the spotlight at the conference		
Poster Presentation at MICDE Scientific Foundation Model Conference	Apr.	2024
• Presented the poster on CLOUD: A Scientific Foundation Model for Crystal Property Prediction		
Invited Speaker at "Math + Machine Learning + X" Seminar at Brown University	Nov.	2022
• Gave a talk on TransPolymer: a Transformer-based Language Model for Polymer Property Predictions		

PROFESSIONAL SERVICE

Reviewer: NeurIPS'23-24, ICLR'24, ICML'24